Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591551

RESUMO

High glucose (HG)-induced endothelial cell (EC) and smooth muscle cell (SMC) dysfunction is critical in diabetes-associated atherosclerosis. However, the roles of heme oxygenase-1 (HO-1), a stress-response protein, in hemodynamic force-generated shear stress and HG-induced metabolic stress remain unclear. This investigation examined the cellular effects and mechanisms of HO-1 under physiologically high shear stress (HSS) in HG-treated ECs and adjacent SMCs. We found that exposure of human aortic ECs to HSS significantly increased HO-1 expression; however, this upregulation appeared to be independent of adenosine monophosphate-activated protein kinase, a regulator of HO-1. Furthermore, HSS inhibited the expression of HG-induced intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and reactive oxygen species (ROS) production in ECs. In an EC/SMC co-culture, compared with static conditions, subjecting ECs close to SMCs to HSS and HG significantly suppressed SMC proliferation while increasing the expression of physiological contractile phenotype markers, such as α-smooth muscle actin and serum response factor. Moreover, HSS and HG decreased the expression of vimentin, an atherogenic synthetic phenotypic marker, in SMCs. Transfecting ECs with HO-1-specific small interfering (si)RNA reversed HSS inhibition on HG-induced inflammation and ROS production in ECs. Similarly, reversed HSS inhibition on HG-induced proliferation and synthetic phenotype formation were observed in co-cultured SMCs. Our findings provide insights into the mechanisms underlying EC-SMC interplay during HG-induced metabolic stress. Strategies to promote HSS in the vessel wall, such as continuous exercise, or the development of HO-1 analogs and mimics of the HSS effect, could provide an effective approach for preventing and treating diabetes-related atherosclerotic vascular complications.

2.
Biochem Pharmacol ; 222: 116096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423188

RESUMO

Calcium channel blockers (CCBs) are commonly used as antihypertensive agents. While certain L-type CCBs exhibit antiatherogenic effects, the impact of Cav3.1 T-type CCBs on antiatherogenesis and lipid metabolism remains unexplored. NNC 55-0396 (NNC) is a highly selective blocker of T-type calcium channels (Cav3.1 channels). We investigated the effects of NNC on relevant molecules and molecular mechanisms in human THP-1 macrophages. Cholesterol efflux, an indicator of reverse cholesterol transport (RCT) efficiency, was assessed using [3H]-labeled cholesterol. In vivo, high cholesterol diet (HCD)-fed LDL receptor knockout (Ldlr-/-) mice, an atherosclerosis-prone model, underwent histochemical staining to analyze plaque burden. Treatment of THP-1 macrophages with NNC facilitated cholesterol efflux and reduced intracellular cholesterol accumulation. Pharmacological and genetic interventions demonstrated that NNC treatment or Cav3.1 knockdown significantly enhanced the protein expression of scavenger receptor B1 (SR-B1), ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and liver X receptor alpha (LXRα) transcription factor. Mechanistic analysis revealed that NNC activates p38 and c-Jun N-terminal kinase (JNK) phosphorylation, leading to increased expression of ABCA1, ABCG1, and LXRα-without involving the microRNA pathway. LXRα isrequired for NNC-induced ABCA1 and ABCG1 expression. Administering NNC diminished atherosclerotic lesion area and lipid deposition in HCD-fed Ldlr-/- mice. NNC's anti-atherosclerotic effects, achieved through enhanced cholesterol efflux and inhibition of lipid accumulation, suggest a promising therapeutic approach for hypertensive patients with atherosclerosis. This research highlights the potential of Cav3.1 T-type CCBs in addressing cardiovascular complications associated with hypertension.


Assuntos
Aterosclerose , Benzimidazóis , Ciclopropanos , Hipercolesterolemia , Naftalenos , Humanos , Animais , Camundongos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Receptores X do Fígado/metabolismo , Colesterol/metabolismo , Hipercolesterolemia/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
3.
Brain Pathol ; : e13244, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308041

RESUMO

Intracerebral hemorrhage (ICH) induces a complex sequence of apoptotic cascades and inflammatory responses, leading to neurological impairment. Transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel with high calcium permeability, has been implicated in neuronal apoptosis and inflammatory responses. This study used a mouse ICH model and neuronal cultures to examine whether TRPV1 activation exacerbates brain damage and neurological deficits by promoting neuronal apoptosis and neuroinflammation. ICH was induced by injecting collagenase in both wild-type (WT) C57BL/6 mice and TRPV1-/- mice. Capsaicin (CAP; a TRPV1 agonist) or capsazepine (a TRPV1 antagonist) was administered by intracerebroventricular injection 30 min before ICH induction in WT mice. The effects of genetic deletion or pharmacological inhibition of TRPV1 using CAP or capsazepine on motor deficits, histological damage, apoptotic responses, blood-brain barrier (BBB) permeability, and neuroinflammatory reactions were explored. The antiapoptotic mechanisms and calcium influx induced by TRPV1 inactivation were investigated in cultured hemin-stimulated neurons. TRPV1 expression was upregulated in the hemorrhagic brain, and TRPV1 was expressed in neurons, microglia, and astrocytes after ICH. Genetic deletion of TRPV1 significantly attenuated motor deficits and brain atrophy for up to 28 days. Deletion of TRPV1 also reduced brain damage, neurodegeneration, microglial activation, cytokine expression, and cell apoptosis at 1 day post-ICH. Similarly, the administration of CAP ameliorated brain damage, neurodegeneration, brain edema, BBB permeability, and cytokine expression at 1 day post-ICH. In primary neuronal cultures, pharmacological inactivation of TRPV1 by CAP attenuated neuronal vulnerability to hemin-induced injury, suppressed apoptosis, and preserved mitochondrial integrity in vitro. Mechanistically, CAP reduced hemin-stimulated calcium influx and prevented the phosphorylation of CaMKII in cultured neurons, which was associated with reduced activation of P38 and c-Jun NH2 -terminal kinase mitogen-activated protein kinase signaling. Our results suggest that TRPV1 inhibition may be a potential therapy for ICH by suppressing mitochondria-related neuronal apoptosis.

4.
Br J Pharmacol ; 180(16): 2085-2101, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36942453

RESUMO

BACKGROUND AND PURPOSE: Vascular smooth muscle cells (SMCs) undergo phenotypic switching during sustained inflammation, contributing to an unfavourable atherosclerotic plaque phenotype. PPARδ plays an important role in regulating SMC functions; however, its role in atherosclerotic plaque vulnerability remains unclear. Here, we explored the pathological roles of PPARδ in atherosclerotic plaque vulnerability in severe atherosclerosis and elucidated the underlying mechanisms. EXPERIMENTAL APPROACH: Plasma levels of PPARδ were measured in patients with acute coronary syndrome (ACS) and stable angina (SA). SMC contractile and synthetic phenotypic markers, endoplasmic reticulum (ER) stress, and features of atherosclerotic plaque vulnerability were analysed for the brachiocephalic artery of apolipoprotein E-knockout (ApoE-/- ) mice, fed a high-cholesterol diet (HCD) and treated with or without the PPARδ agonist GW501516. In vitro, the role of PPARδ was elucidated using human aortic SMCs (HASMCs). KEY RESULTS: Patients with ACS had significantly lower plasma PPARδ levels than those with SA. GW501516 reduced atherosclerotic plaque vulnerability, a synthetic SMC phenotype, ER stress markers, and NLRP3 inflammasome expression in HCD-fed ApoE-/- mice. ER stress suppressed PPARδ expression in HASMCs. PPARδ activation inhibited ER stress-induced synthetic phenotype development, ER stress-NLRP3 inflammasome axis activation and matrix metalloproteinase 2 (MMP2) expression in HASMCs. PPARδ inhibited NFκB signalling and alleviated ER stress-induced SMC phenotypic switching. CONCLUSIONS AND IMPLICATIONS: Low plasma PPARδ levels may be associated with atherosclerotic plaque vulnerability. Our findings provide new insights into the mechanisms underlying the protective effect of PPARδ on SMC phenotypic switching and improvement the features of atherosclerotic plaque vulnerability.


Assuntos
PPAR delta , Placa Aterosclerótica , Animais , Humanos , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Inflamassomos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fenótipo , Placa Aterosclerótica/metabolismo , PPAR delta/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-36498038

RESUMO

This article looks at the strategies that influence healthy ageing at work from the motivational theory of life span development (MTD). It aims to better understand the influence of job crafting as a selective primary control, help-seeking as a compensatory primary control, positive reappraisal as a selective secondary control, and downward social comparison and downgrading expectation as a compensatory secondary control on healthy ageing at work (work engagement, health, and motivation to continue working after retirement). A total of 386 educational personnel participated in the study. This study used hierarchical regression analysis to test incremental validity, supplemented with confirmatory factor analysis and structural equation modelling as a solution to solve the potential error problems caused. The results show that job crafting is positively correlated with healthy ageing at work. Positive reappraisal and downward social comparison showed incremental validity in predicting healthy ageing at work beyond job crafting among the middle-aged group (45-65-years-old); in particular, positive reappraisal was the determinant of healthy ageing at work among the middle-aged group. However, both help-seeking and downgrading expectation did not show incremental validity. This study can contribute to the evolution of career development interventions and human resource management focused on supporting older people at work.


Assuntos
Pessoal de Educação , Envelhecimento Saudável , Saúde Ocupacional , Pessoa de Meia-Idade , Humanos , Idoso , Engajamento no Trabalho , Satisfação no Emprego
6.
Front Immunol ; 12: 740562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764958

RESUMO

Heatstroke (HS) can cause acute lung injury (ALI). Heat stress induces inflammation and apoptosis via reactive oxygen species (ROS) and endogenous reactive aldehydes. Endothelial dysfunction also plays a crucial role in HS-induced ALI. Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that detoxifies aldehydes such as 4-hydroxy-2-nonenal (4-HNE) protein adducts. A single point mutation in ALDH2 at E487K (ALDH2*2) intrinsically lowers the activity of ALDH2. Alda-1, an ALDH2 activator, attenuates the formation of 4-HNE protein adducts and ROS in several disease models. We hypothesized that ALDH2 can protect against heat stress-induced vascular inflammation and the accumulation of ROS and toxic aldehydes. Homozygous ALDH2*2 knock-in (KI) mice on a C57BL/6J background and C57BL/6J mice were used for the animal experiments. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro experiment. The mice were directly subjected to whole-body heating (WBH, 42°C) for 1 h at 80% relative humidity. Alda-1 (16 mg/kg) was administered intraperitoneally prior to WBH. The severity of ALI was assessed by analyzing the protein levels and cell counts in the bronchoalveolar lavage fluid, the wet/dry ratio and histology. ALDH2*2 KI mice were susceptible to HS-induced ALI in vivo. Silencing ALDH2 induced 4-HNE and ROS accumulation in HUVECs subjected to heat stress. Alda-1 attenuated the heat stress-induced activation of inflammatory pathways, senescence and apoptosis in HUVECs. The lung homogenates of mice pretreated with Alda-1 exhibited significantly elevated ALDH2 activity and decreased ROS accumulation after WBH. Alda-1 significantly decreased the WBH-induced accumulation of 4-HNE and p65 and p38 activation. Here, we demonstrated the crucial roles of ALDH2 in protecting against heat stress-induced ROS production and vascular inflammation and preserving the viability of ECs. The activation of ALDH2 by Alda-1 attenuates WBH-induced ALI in vivo.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Aldeído-Desidrogenase Mitocondrial/metabolismo , Endotélio Vascular/fisiologia , Golpe de Calor/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Benzamidas/administração & dosagem , Benzodioxóis/administração & dosagem , Cardiotônicos/administração & dosagem , Técnicas de Introdução de Genes , Golpe de Calor/complicações , Golpe de Calor/tratamento farmacológico , Calefação , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Estresse Oxidativo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
7.
J Pers Med ; 11(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34834501

RESUMO

(1) Background: While an artificial intelligence (AI)-based, cardiologist-level, deep-learning model for detecting acute myocardial infarction (AMI), based on a 12-lead electrocardiogram (ECG), has been established to have extraordinary capabilities, its real-world performance and clinical applications are currently unknown. (2) Methods and Results: To set up an artificial intelligence-based alarm strategy (AI-S) for detecting AMI, we assembled a strategy development cohort including 25,002 visits from August 2019 to April 2020 and a prospective validation cohort including 14,296 visits from May to August 2020 at an emergency department. The components of AI-S consisted of chest pain symptoms, a 12-lead ECG, and high-sensitivity troponin I. The primary endpoint was to assess the performance of AI-S in the prospective validation cohort by evaluating F-measure, precision, and recall. The secondary endpoint was to evaluate the impact on door-to-balloon (DtoB) time before and after AI-S implementation in STEMI patients treated with primary percutaneous coronary intervention (PPCI). Patients with STEMI were alerted precisely by AI-S (F-measure = 0.932, precision of 93.2%, recall of 93.2%). Strikingly, in comparison with pre-AI-S (N = 57) and post-AI-S (N = 32) implantation in STEMI protocol, the median ECG-to-cardiac catheterization laboratory activation (EtoCCLA) time was significantly reduced from 6.0 (IQR, 5.0-8.0 min) to 4.0 min (IQR, 3.0-5.0 min) (p < 0.01). The median DtoB time was shortened from 69 (IQR, 61.0-82.0 min) to 61 min (IQR, 56.8-73.2 min) (p = 0.037). (3) Conclusions: AI-S offers front-line physicians a timely and reliable diagnostic decision-support system, thereby significantly reducing EtoCCLA and DtoB time, and facilitating the PPCI process. Nevertheless, large-scale, multi-institute, prospective, or randomized control studies are necessary to further confirm its real-world performance.

8.
Front Pharmacol ; 12: 716332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276388

RESUMO

Diabetes mellitus is a metabolic syndrome that affects millions of people worldwide. Recent studies have demonstrated that protein kinase C (PKC) activation plays an important role in hyperglycemia-induced atherosclerosis. PKC activation is involved in several cellular responses such as the expression of various growth factors, activation of signaling pathways, and enhancement of oxidative stress in hyperglycemia. However, the role of PKC activation in pro-atherogenic and anti-atherogenic mechanisms remains controversial, especially under hyperglycemic condition. In this review, we discuss the role of different PKC isoforms in lipid regulation, oxidative stress, inflammatory response, and apoptosis. These intracellular events are linked to the pathogenesis of atherosclerosis in diabetes. PKC deletion or treatment with PKC inhibitors has been studied in the regulation of atherosclerotic plaque formation and evolution. Furthermore, some preclinical and clinical studies have indicated that PKCß and PKCδ are potential targets for the treatment of diabetic vascular complications. The current review summarizes these multiple signaling pathways and cellular responses regulated by PKC activation and the potential therapeutic targets of PKC in diabetic complications.

9.
Biochem Pharmacol ; 188: 114581, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33895158

RESUMO

Atherosclerotic cardiovascular diseases (ASCVDs), associated with vascular inflammation and lipid dysregulation, are responsible for high morbidity and mortality rates globally. For ASCVD treatment, cholesterol efflux plays an atheroprotective role in ameliorating inflammation and lipid dysregulation. To develop a multidisciplinary agent for promoting cholesterol efflux, octimibate derivatives were screened and investigated for the expression of ATP-binding cassette transporter A1 (ABCA1). Western blotting and qPCR analysis were conducted to determine the molecular mechanism associated with ABCA1 expression in THP-1 macrophages; results revealed that Oxa17, an octimibate derivative, enhanced ABCA1 expression through liver X receptors alpha (LXRα) activation but not through the microRNA pathway. We also investigated the role of Oxa17 in high-fat diet (HFD)-fed mice used as an in vivo atherosclerosis-prone model. In ldlr-/- mice, Oxa17 increased plasma high-density lipoprotein (HDL) and reduced plaque formation in the aorta. Plaque stability improved via reduction of macrophage accumulation and via narrowing of the necrotic core size under Oxa17 treatment. Our study demonstrates that Oxa17 is a novel and potential agent for ASCVD treatment with atheroprotective and anti-inflammatory properties.


Assuntos
Anti-Inflamatórios/uso terapêutico , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Colesterol/metabolismo , Imidazóis/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Aterosclerose/etiologia , Dieta Hiperlipídica/efeitos adversos , Relação Dose-Resposta a Droga , Humanos , Imidazóis/química , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células THP-1
10.
Exp Ther Med ; 21(5): 438, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33747175

RESUMO

Shear stress has been reported to result in various metabolic effects in endothelial cells (ECs), which in turn contribute to the regulation of their vascular functions. Peroxisome proliferator-activated receptors (PPARs) have been reported to regulate lipid metabolism and have been implicated in metabolic disorders. The present study assessed the effects of laminar shear stress on the expression of PPARs in ECs in the presence of high concentrations of free fatty acids (FFAs). Human aortic ECs (HAECs) were treated with a high concentrations of palmitic acid (PA) and exposed to high shear stress (HSS) or low shear stress (LSS). Western blotting and ELISA were performed to quantify protein expression and assess prostacyclin production. The results revealed that long-term application of HSS to PA-treated HAECs induced PPAR-α, -δ and -γ protein expression. Additionally, LSS induced higher levels of PPAR-α protein expression in PA-treated HAECs compared with those after HSS. HAECs exposed to HSS also released prostacyclin (PGI2). However, HAECs treated with high concentrations of PA also produced high levels of PGI2 in the perfusion media in response to HSS compared with the static PA group. HSS also reduced the static PA-induced expression of intercellular adhesion molecule-1 and monocyte chemoattractant protein-1. The results demonstrated that HAECs increases the expression of all three peroxisome proliferator-activated receptor isoforms in response to shear metabolic stress at high FFA concentrations. The present study may provide preliminary insights into the potential roles of PPARs as an effective treatment method against metabolic disturbances that can result in EC dysfunction.

11.
Biochem Biophys Res Commun ; 550: 70-76, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33689882

RESUMO

T cells secrete several inflammatory cytokines that play a critical role in the progression of atherosclerosis. Although green tea epigallocatechin-3-gallate (EGCG) exerts anti-inflammatory and anti-atherosclerotic effects in animals, few studies have identified the mechanism underlying these effects in human primary T cells. This study investigated the pathway involved in EGCG modulation of cytokine secretion in activated human primary T cells. We pre-treated human primary T cells with EGCG (0.1, 1, 5, 10, and 20 µM) for 4 h and incubated them with or without phorbol 12-myristate 13-acetate and ionomycin (P/I) for 20 h. The cytokine production, activator protein (AP)-1 binding activity, and level of mitogen-activated protein kinase (MAPK) were assessed using enzyme-linked immunosorbent assay, electrophoretic mobility shift assay, and Western blotting, respectively. At 10 and 20 µM, EGCG decreased interleukin (IL)-2 levels by 26.0% and 38.8%, IL-4 levels by 41.5% and 55.9%, INF-γ levels by 31.3% and 34.7%, and tumor-necrosis factor (TNF)-α levels by 23.0% and 37.6%, respectively. In addition, the level of phosphorylated c-Jun N-terminal (p-JNK) and extracellular signal-regulated kinase (p-ERK) was decreased, but not the level of p-p38 MAPK. EGCG did not alter any of the total protein amounts, suggesting a selective effect on specific types of MAPKs in stimulated human T cells. EGCG tended to inactivate AP-1 DNA-binding activity. The P/I-induced production of IL-2, IL-4, INF-γ, and TNF-α by human T cells was suppressed by AP-1 inhibitor in a concentration-dependent manner. In conclusion, EGCG suppressed cytokine secretion in activated human primary T cells, and this effect was likely mediated by AP-1 inactivation through the ERK and JNK, but not p38 MAPK, pathways. These results may be related to the mechanisms through which EGCG inhibits immune- or inflammation-related atherogenesis.


Assuntos
Catequina/análogos & derivados , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/farmacologia , Catequina/imunologia , Catequina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Ativação Linfocitária/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Linfócitos T/citologia , Linfócitos T/metabolismo , Fator de Transcrição AP-1/metabolismo
12.
Biomedicines ; 8(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202854

RESUMO

Statins constitute the mainstay treatment for atherosclerotic cardiovascular disease, which is associated with the risk of new-onset diabetes mellitus (NODM). However, the effects of individual statins on the risk of NODM remain unclear. We recruited 48,941 patients taking one of the three interested statins in a tertiary hospital between 2006 and 2018. Among them, 8337 non-diabetic patients taking moderate-intensity statins (2 mg/day pitavastatin, 10 mg/day atorvastatin, and 10 mg/day rosuvastatin) were included. The pitavastatin group had a higher probability of being NODM-free than the atorvastatin and rosuvastatin groups during the 4-year follow-up (log-rank test: p = 0.038). A subgroup analysis revealed that rosuvastatin had a significantly higher risk of NODM than pitavastatin among patients with coronary artery disease (CAD) (adjusted HR [aHR], 1.47, 95% confidence interval [CI], 1.05-2.05, p = 0.025), hypertension (aHR, 1.26, 95% CI, 1.00-1.59, p = 0.047), or chronic obstructive pulmonary disease (COPD) (aHR, 1.74, 95% CI, 1.02-2.94, p = 0.04). We concluded that compared with rosuvastatin, reduced diabetogenic effects of pitavastatin were observed among patients treated with moderate-intensity statin who had hypertension, COPD, or CAD. Additional studies are required to prove the effects of different statins on the risk of NODM.

13.
Br J Pharmacol ; 177(23): 5375-5392, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32579243

RESUMO

BACKGROUND AND PURPOSE: Atherosclerosis, resulting from lipid dysregulation and vascular inflammation, causes atherosclerotic cardiovascular disease (ASCVD), which contributes to morbidity and mortality worldwide. Chalcone and its derivatives possess beneficial properties, including anti-inflammatory, antioxidant and antitumour activity with unknown cardioprotective effects. We aimed to develop an effective chalcone derivative with antiatherogenic potential. EXPERIMENTAL APPROACH: Human THP-1 cells and HUVECs were used as in vitro models. Western blots and real-time PCRs were performed to quantify protein, mRNA and miRNA expressions. The cholesterol efflux capacity was assayed by 3 H labelling of cholesterol. LDL receptor knockout (Ldlr-/- ) mice fed a high-fat diet were used as an in vivo atherogenesis model. Haematoxylin and eosin and oil red O staining were used to analyse plaque formation. KEY RESULTS: Using ATP-binding cassette transporter A1 (ABCA1) expression we identified the chalcone derivative, 1m-6, which enhances ABCA1 expression and promotes cholesterol efflux in THP-1 macrophages. Moreover, 1m-6 stabilizes ABCA1 mRNA and suppresses the expression of potential ABCA1-regulating miRNAs through nuclear factor erythroid 2-related factor 2 (Nrf2)/haem oxygenase-1 (HO-1) signalling. Additionally, 1m-6 significantly inhibits TNF-α-induced expression of adhesion molecules, vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), plus production of proinflammatory cytokines via inhibition of JAK/STAT3 activation and the modulation of Nrf2/HO-1 signalling in HUVECs. In atherosclerosis-prone mice, 1m-6 significantly reduces lipid accumulation and atherosclerotic plaque formation. CONCLUSION AND IMPLICATIONS: Our study demonstrates that 1m-6 produces promising atheroprotective effects by enhancing cholesterol efflux and suppressing inflammation-induced endothelial dysfunction, which opens a new avenue for treating ASCVD. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.


Assuntos
Aterosclerose , Chalcona , Chalconas , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Chalcona/farmacologia , Chalconas/farmacologia , Colesterol , Inflamação/tratamento farmacológico , Camundongos , Camundongos Knockout
14.
Heart ; 106(8): 616-623, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31582568

RESUMO

PURPOSE: This study evaluated the association between ischaemic stroke (IS) and heart failure (HF) in the absence of atrial fibrillation (AF) or atrial flutter (AFL) using a population-based nation-wide cohort database. METHOD: Newly diagnosed patients with HF without previous stroke and acute myocardial infarction (AMI) were enrolled. Based on the propensity scores matching age, sex and all comorbidities, our studies comprised 12 179 patients with HF and 12 179 patients without HF. Cox proportion hazard regression models and competing-risk regression models were used to evaluate the risk of IS among patients with HF without AF or AFL. RESULTS: In the multivariable analysis, older age (adjusted HR (95% CI)=1.05 (1.04 to 1.05)), male sex (adjusted HR (95% CI)=1.36 (1.24 to 1.50)), diabetes (adjusted HR (95% CI)=2.22 (1.97 to 2.49)) and hypertension (adjusted HR (95% CI)=1.60 (1.41 to 1.82)) were markedly associated with IS in patients with HF. The HF group had a markedly higher risk of IS than did the non-HF group (subdistribution HR (SHR)=1.51, 95% CI: 1.37 to 1.66) and AMI (SHR=3.40, 95% CI: 2.71 to 4.28). Additionally, according to the Kaplan-Meier analysis, patients with HF were at a significantly higher risk of cumulative incidence of IS and AMI than did patients with non-HF (p value of log-rank test <0.001). CONCLUSION: This study indicated that HF is a strong independent risk factor for IS, even in the absence of AF or AFL. Clinical physicians should investigate IS through routine screening and careful monitoring of patients with HF.


Assuntos
Isquemia Encefálica/etiologia , Insuficiência Cardíaca/complicações , Medição de Risco/métodos , Idoso , Fibrilação Atrial , Flutter Atrial , Isquemia Encefálica/epidemiologia , Feminino , Insuficiência Cardíaca/fisiopatologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida/tendências , Taiwan/epidemiologia
15.
Int J Mol Sci ; 20(20)2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31635197

RESUMO

Carvedilol (Cav), a nonselective ß-blocker with α1 adrenoceptor blocking effect, has been used as a standard therapy for coronary artery disease. This study investigated the effects of Cav on exosome expression and function, ATP-binding cassette transporter A1 (ABCA1) expression, and cholesterol efflux that are relevant to the process of atherosclerosis. Human monocytic (THP-1) cell line and human hepatic (Huh-7) cells were treated with Cav, and cholesterol efflux was measured. Exosomes from cell culture medium or mice serum were isolated using glycan-coated recognition beads. Low-density lipoprotein receptor knockout (ldlr-/-) mice were fed with high-fat diet and treated with Cav. Cav accentuated cholesterol efflux and enhanced the expressions of ABCA1 protein and mRNA in both THP-1 and Huh-7 cells. In addition, Cav increased expression and function of exosomal ABCA1 in THP-1 macrophage exosomes. The mechanisms were associated with inhibition of nuclear factor-κB (NF-κB) and protein kinase B (Akt). In hypercholesterolemic ldlr-/- mice, Cav enhanced serum exosomal ABCA1 expression and suppressed atherosclerosis by inhibiting lipid deposition and macrophage accumulation. Cav halts atherosclerosis by enhancing cholesterol efflux and increasing ABCA1 expression in macrophages and in exosomes, possibly through NF-κB and Akt signaling, which provides mechanistic insights regarding the beneficial effects of Cav on atherosclerotic cardiovascular disease.


Assuntos
Anti-Hipertensivos/farmacologia , Aterosclerose/tratamento farmacológico , Carvedilol/farmacologia , Colesterol/metabolismo , Exossomos/metabolismo , Receptores de LDL/fisiologia , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Transporte Biológico , Dieta Hiperlipídica/efeitos adversos , Exossomos/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células THP-1
16.
Cell Microbiol ; 21(10): e13085, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31290210

RESUMO

Staphylococcus aureus is frequently isolated from patients with community-acquired pneumonia and acute respiratory distress syndrome (ARDS). ARDS is associated with staphylococcal phosphatidylinositol-specific phospholipase C (PI-PLC); however, the role of PI-PLC in the pathogenesis and progression of ARDS remains unknown. Here, we showed that recombinant staphylococcal PI-PLC possesses enzyme activity that causes shedding of glycosylphosphatidylinositol-anchored CD55 and CD59 from human umbilical vein endothelial cell surfaces and triggers cell lysis via complement activity. Intranasal infection with PI-PLC-positive S. aureus resulted in greater neutrophil infiltration and increased pulmonary oedema compared with a plc-isogenic mutant. Although indistinguishable proinflammatory genes were induced, the wild-type strain activated higher levels of C5a in lung tissue accompanied by elevated albumin instillation and increased lactate dehydrogenase release in bronchoalveolar lavage fluid compared with the plc- mutant. Following treatment with cobra venom factor to deplete complement, the wild-type strain with PI-PLC showed a reduced ability to trigger pulmonary permeability and tissue damage. PI-PLC-positive S. aureus induced the formation of membrane attack complex, mainly on type II pneumocytes, and reduced the level of CD55/CD59, indicating the importance of complement regulation in pulmonary injury. In conclusion, S. aureus PI-PLC sensitised tissue to complement activation leading to more severe tissue damage, increased pulmonary oedema, and ARDS progression.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Sistema Complemento/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Edema Pulmonar/imunologia , Edema Pulmonar/microbiologia , Síndrome do Desconforto Respiratório/microbiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/enzimologia , Células Epiteliais Alveolares/enzimologia , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/microbiologia , Animais , Proteínas de Bactérias/genética , Antígenos CD55/imunologia , Antígenos CD59/imunologia , Citocinas/metabolismo , Glicosilfosfatidilinositóis/imunologia , Glicosilfosfatidilinositóis/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosfoinositídeo Fosfolipase C/genética , Edema Pulmonar/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/metabolismo , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
17.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31330988

RESUMO

Statins inhibiting 3-hydroxy-3-methylglutaryl-CoA reductase are the standard treatment for hypercholesterolemia in atherosclerotic cardiovascular disease (ASCVD), mediated by inflammatory reactions within vessel walls. Several studies highlighted the pleiotropic effects of statins beyond their lipid-lowering properties. However, few studies investigated the effects of statins on T cell activation. This study evaluated the immunomodulatory capacities of three common statins, pitavastatin, atorvastatin, and rosuvastatin, in activated human T cells. The enzyme-linked immunosorbent assay (ELISA) and quantitative real time polymerase chain reaction (qRT-PCR) results demonstrated stronger inhibitory effects of pitavastatin on the cytokine production of T cells activated by phorbol 12-myristate 13-acetate (PMA) plus ionomycin, including interleukin (IL)-2, interferon (IFN)-γ, IL-6, and tumor necrosis factor α (TNF-α). Molecular investigations revealed that pitavastatin reduced both activating protein-1 (AP-1) DNA binding and transcriptional activities. Further exploration showed the selectively inhibitory effect of pitavastatin on the signaling pathways of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), but not c-Jun N-terminal kinase (JNK). Our findings suggested that pitavastatin might provide additional benefits for treating hypercholesterolemia and ASCVD through its potent immunomodulatory effects on the suppression of ERK/p38/AP-1 signaling in human T cells.


Assuntos
Anti-Inflamatórios/farmacologia , Fatores Imunológicos/farmacologia , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Fator de Transcrição AP-1/metabolismo , Aterosclerose/etiologia , Aterosclerose/metabolismo , Citocinas/biossíntese , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Modelos Biológicos , Ésteres de Forbol , Linfócitos T/imunologia
18.
Molecules ; 23(7)2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970865

RESUMO

Atherosclerosis is a process of imbalanced lipid metabolism in the vascular walls. The underlying pathology mainly involves the deposition of oxidized lipids in the endothelium and the accumulation of cholesterol in macrophages. Macrophages export excessive cholesterol (cholesterol efflux) through ATP-binding cassette transporter A1 (ABCA1) to counter the progression of atherosclerosis. We synthesized novel chalcone derivatives and assessed their effects and the underlying mechanisms on ABCA1 expression in macrophages. Human THP-1 macrophages were treated with synthetic chalcone derivatives for 24 h. In Western blot and flow cytometry analyses, a chalcone derivative, (E)-1-(3,4-diisopropoxyphenyl)-3-(4-isopropoxy-3-methoxyphenyl)prop- 2-en-1-one (1m), was observed to significantly enhance ABCA1 protein expression in THP-1 cells (10 µM, 24 h). Levels of mRNA of ABCA1 and liver X receptor alpha (LXRα) were quantified using a real-time quantitative polymerase chain reaction technique and were found to be significantly increased after treatment with the novel chalcone derivative 1m. Several microRNAs, including miR155, miR758, miR10b, miR145, miR33, and miR106b, which functionally inhibit ABCA1 expression were suppressed after treatment with 1m. Collectively, 1m increases ABCA1 expression in human THP-1 macrophages. The mechanisms involve the activation of the LXRα-ABCA1 pathway and suppression of certain microRNAs that regulate ABCA1 expression.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Chalconas/síntese química , Chalconas/farmacologia , Macrófagos/citologia , Regulação para Cima , Chalconas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores X do Fígado/genética , Macrófagos/efeitos dos fármacos , MicroRNAs/genética , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Células THP-1
19.
Cell Physiol Biochem ; 47(2): 707-720, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29794461

RESUMO

BACKGROUND/AIMS: Hyperlipidemia induces dysfunction in the smooth muscle cells (SMCs) of the blood vessels, and the vascular remodeling that ensues is a key proatherogenic factor contributing to cardiovascular events. Chemokines and chemokine receptors play crucial roles in vascular remodeling. Here, we examined whether the hyperlipidemia-derived chemokine CCL5 and its receptor CCR5 influence vascular SMC proliferation, phenotypic switching, and explored the underlying mechanisms. METHODS: Thoracoabdominal aorta were isolated from wild-type, CCL5 and CCR5 double-knockout mice (CCL5-/-CCR5-/-) fed a high-fat diet (HFD) for 12 weeks. Expression of the contractile, synthetic, and proliferation markers were assayed using immunohistochemical and western blotting. The effects of CCL5 and palmitic acid on cultured SMC proliferation and phenotypic modulation were evaluated using flow cytometry, bromodeoxyuridine (BrdU), and western blotting. RESULTS: Wild-type mice fed an HFD showed markedly increased total cholesterol, triglyceride, and CCL5 serum levels, as well as significantly increased CCL5 and CCR5 expression in the thoracoabdominal aorta vs. normal-diet-fed controls. HFD-fed CCL5-/-CCR5-/- mice showed significantly decreased expression of the synthetic phenotype marker osteopontin and the proliferation marker proliferating cell nuclear antigen, and increased expression of the contractile phenotype marker smooth muscle α-actin in the thoracoabdominal aorta vs. wild-type HFD-fed mice. Human aorta-derived SMCs stimulated with palmitic acid showed significantly increased expression of CCL5, CCR5, and synthetic phenotype markers, as well as increased proliferation. CCL5-treated SMCs showed increased cell cycle regulatory protein expression, paralleling increased synthetic and decreased contractile phenotype marker expression. Inhibition of CCR5 activity by the specific antagonist maraviroc or its expression using small interfering RNA significantly inhibited human aortic SMC proliferation and synthetic phenotype formation. Therefore, CCL5 induces SMC proliferation and phenotypic switching from a contractile to synthetic phenotype via CCR5. CCL5-mediated SMC stimulation activated ERK1/2, Akt/p70S6K, p38 MAPK, and NF-κB signaling. NF-κB inhibition significantly reduced CCR5 expression along with CCR5-induced SMC proliferation and synthetic phenotype formation. CONCLUSIONS: Hyperlipidemia-induced CCL5/CCR5 axis activation serves as a pivotal mediator of vascular remodeling, indicating that CCL5 and CCR5 are key chemokine-related factors in atherogenesis. SMC proliferation and synthetic phenotype transformation attenuation by CCR5 pharmacological inhibition may offer a new approach to treatment or prevention of atherosclerotic diseases associated with hyperlipidemia.


Assuntos
Proliferação de Células , Quimiocina CCL5/genética , Receptores CCR5/genética , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Linhagem Celular , Quimiocina CCL5/antagonistas & inibidores , Quimiocina CCL5/metabolismo , Dieta Hiperlipídica , Humanos , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Osteopontina/metabolismo , Fenótipo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores CCR5/metabolismo
20.
Exp Ther Med ; 13(5): 2486-2492, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28565869

RESUMO

Atrial fibrillation (AF) is associated with mitochondrial dysfunction. Sinoatrial node (SAN) dysfunction increases arrhythmogenesis of pulmonary veins (PVs), which is the most important trigger of AF; however, it is not clear whether mitochondrial dysfunction differentially regulates electrical activity of SANs and PVs. In the present study, conventional microelectrodes were used to record the action potentials (APs) in isolated rabbit PVs, SANs, left atrium (LA) and right atrium (RA) before and after application of trifluorocarbonylcyanide phenylhydrazone (FCCP; a mitochondrial uncoupling agent) at 10, 100 and 300 nM. FCCP application at 100 and 300 nM decreased spontaneous rates in PVs and in SANs at 10, 100 and 300 nM. FCCP shortened the 20, 50 and 90% AP durations in the LA, and shortened only the 20% AP duration in the RA. FCCP caused a greater rate reduction in SANs than in PVs; however, in the presence of coenzyme-Q10 (10 µM), FCCP reduced the beating rate in PVs and SANs to a similar extent. In SAN-PV preparations with intact electrical connections, FCCP (100 nM) application shifted the SAN-PV electrical conduction into PV-SAN conduction in 5 (62.5%) of 8 preparations. In conclusion, mitochondrial dysfunction modulates PV and SAN electrical activities, which may contribute to atrial arrhythmogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...